首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3333篇
  免费   273篇
  国内免费   3篇
  2021年   19篇
  2020年   22篇
  2019年   23篇
  2018年   23篇
  2017年   25篇
  2016年   50篇
  2015年   86篇
  2014年   91篇
  2013年   140篇
  2012年   156篇
  2011年   169篇
  2010年   96篇
  2009年   113篇
  2008年   140篇
  2007年   161篇
  2006年   164篇
  2005年   149篇
  2004年   129篇
  2003年   133篇
  2002年   128篇
  2001年   58篇
  2000年   59篇
  1999年   53篇
  1998年   53篇
  1997年   54篇
  1996年   41篇
  1995年   34篇
  1994年   44篇
  1993年   35篇
  1992年   41篇
  1991年   47篇
  1990年   30篇
  1989年   40篇
  1988年   35篇
  1987年   29篇
  1986年   29篇
  1985年   35篇
  1984年   31篇
  1983年   26篇
  1982年   28篇
  1981年   28篇
  1980年   39篇
  1977年   29篇
  1975年   22篇
  1974年   25篇
  1973年   20篇
  1970年   17篇
  1968年   20篇
  1936年   17篇
  1932年   18篇
排序方式: 共有3609条查询结果,搜索用时 484 毫秒
991.
The cDNA for human endo-alpha1,2-mannosidase was reconstructed using two independent EST-clones and its properties characterized. The 2837 bp cDNA construct contained a 1389 bp open reading frame (ORF) encoding for 462 amino acids and an approximately 53.6 kDa protein, respectively. Hydrophobicity analysis of this amino acid sequence, as well as proteolytic degradation studies, indicate that the enzyme is a type II protein, anchored in the membrane via a 19 amino-acid long apolar sequence close to the N-terminus. Human endo-alpha1,2-mannosidase displays a high degree of sequence identity with the catalytic domain of the homologous rat liver endo-enzyme, but differs substantially in the N-terminal peptide region, which includes the transmembrane domain. No sequence similarity exists with other processing alpha-glycosidases. Based on sequence information provided by the 2837 bp construct, the cDNA consisting of the complete 1389 bp ORF was amplified by RT-PCR using human fibroblast RNA. Incubation of E. coli lysates with this cDNA, previously modified for boost translation by codon optimization, resulted in the synthesis of an approximately 52 kDa protein which degraded [(14)C]Glc(3)-Man(9)-GlcNAc(2) efficiently, indicating that the catalytic domain of the enzyme folds correctly under cell-free conditions. Transfection of the endo-alpha1,2-mannosidase wild-type cDNA into COS 1 cells resulted in a moderate (approximately 1.5-fold) but reproducible increase of activity compared with control cells, whereas >18-fold increase in activity was measured after expression of a chimera containing green-fluorescent-protein (GFP) attached to the N-terminus of the endo-alpha1,2-mannosidase polypeptide. This, together with the observation that GFP-endo-alpha1,2-mannosidase is expressed as a Golgi-resident type II protein, points to enzyme-specific parameters directing folding and membrane anchoring, as well as Golgi-targeting, not being affected by fusion of GFP to the endo-alpha1,2-mannosidase N-terminus.  相似文献   
992.
The human gastrointestinal tract is colonized by an abundance of bacteria, which are in constant interaction with the epithelial lining usually leading to an intricate balance between tolerance and immunological response. There is ample evidence that the abundant presence of bacteria thus plays a role in the maintenance of human health, as well as in the induction of chronic inflammatory diseases of the gastrointestinal tract. Research in this field is, however, considerably hampered by the abundance of bacterial species, many of which have not even been characterized, and are difficult to culture specifically. These important limitations may to some extent be overcome by recent molecular biologic methods. Furthermore however, the adherent mucosal flora may differ largely from the luminal flora and that in excreta. These characteristics do not pertain to Helicobacter pylori, which generally colonizes the human stomach as a single strain with stable characteristics. Such colonization is stable throughout life, but can be treated. Furthermore, the association with chronic gastritis is very strong. For these reasons, H. pylori serves as an excellent model for the understanding of the processes involved in bacterial colonization and host response including mediation of immunoregulation, and the mechanisms by which this response can lead to disease.  相似文献   
993.
The endocytic accessory clathrin assembly lymphoid myeloid leukemia protein (CALM) is the ubiquitously expressed homolog of the neuron-specific protein AP180 that has been implicated in the retrieval of synaptic vesicle. Here, we show that CALM associates with the alpha-appendage domain of the AP2 adaptor via the three peptide motifs 420DPF, 375DIF and 489FESVF and to a lesser extent with the amino-terminal domain of the clathrin heavy chain. Reducing clathrin levels by RNA interference did not significantly affect CALM localization, but depletion of AP2 weakens its association with the plasma membrane. In cells, where CALM levels were reduced by RNA interference, AP2 and clathrin remained organized in somewhat enlarged bright fluorescent puncta. Electron microscopy showed that the depletion of CALM drastically affected the clathrin lattice structure. Round-coated buds, which are the predominant features in control cells, were replaced by irregularly shaped buds and long clathrin-coated tubules. Moreover, we noted an increase in the number of very small cages that formed on flat lattices. Furthermore, we noticed a redistribution of endosomal markers and AP1 in cells that were CALM depleted. Taken together, our findings indicate a critical role for CALM in the regulation and orderly progression of coated bud formation at the plasma membrane.  相似文献   
994.
Regulation of resource allocation in plants is the key to integrate understanding of metabolism and resource flux across the whole plant. The challenge is to understand trade-offs as plants balance allocation between different and conflicting demands, e.g., for staying competitive with neighbours and ensuring defence against parasites. Related hypothesis evaluation can, however, produce equivocal results. Overcoming deficits in understanding underlying mechanisms is achieved through integrated experimentation and modelling the various spatio-temporal scaling levels, from genetic control and cell metabolism towards resource flux at the stand level. An integrated, interdisciplinary research concept on herbaceous and woody plants and its outcome to date are used, while drawing attention to currently available knowledge. This assessment is based on resource allocation as driven through plant-pathogen and plant-mycorrhizosphere interaction, as well as competition with neighbouring plants in stands, conceiving such biotic interactions as a "unity" in the control of allocation. Biotic interaction may diminish or foster effects of abiotic stress on allocation, as changes in allocation do not necessarily result from metabolic re-adjustment but may obey allometric rules during ontogeny. Focus is required on host-pathogen interaction under variable resource supply and disturbance, including effects of competition and mycorrhization. Cost/benefit relationships in balancing resource investments versus gains turned out to be fundamental in quantifying competitiveness when related to the space, which is subject to competitive resource exploitation. A space-related view of defence as a form of prevention of decline in competitiveness may promote conversion of resource turnover across the different kinds of biotic interaction, given their capacity in jointly controlling whole plant resource allocation.  相似文献   
995.
Ozone and light effects on endophytic colonization by Apiognomonia errabunda of adult beech trees (Fagus sylvatica) and their putative mediation by internal defence compounds were studied at the Kranzberg Forest free-air ozone fumigation site. A. errabunda colonization was quantified by "real-time PCR" (QPCR). A. errabunda-specific primers allowed detection without interference by DNA from European beech and several species of common genera of plant pathogenic fungi, such as Mycosphaerella, Alternaria, Botrytis, and Fusarium. Colonization levels of sun and shade leaves of European beech trees exposed either to ambient or twice ambient ozone regimes were determined. Colonization was significantly higher in shade compared to sun leaves. Ozone exhibited a marginally inhibitory effect on fungal colonization only in young leaves in 2002. The hot and dry summer of 2003 reduced fungal colonization dramatically, being more pronounced than ozone treatment or sun exposure. Levels of soluble and cell wall-bound phenolic compounds were approximately twice as high in sun than in shade leaves. Acylated flavonol 3- O-glycosides with putatively high UV-B shielding effect were very low in shade canopy leaves. Ozone had only a minor influence on secondary metabolites in sun leaves. It slightly increased kaempferol 3- O-glucoside levels exclusively in shade leaves. The frequently prominent hydroxycinnamic acid derivative, chlorogenic acid, was tested for its growth inhibiting activity against Apiognomonia and showed an IC50 of approximately 8 mM. Appearance of Apiognomonia-related necroses strongly correlated with the occurrence of the stress metabolite, 3,3',4,4'-tetramethoxybiphenyl. Infection success of Apiognomonia was highly dependent on light exposure, presumably affected by the endogenous levels of constitutive phenolic compounds. Ozone exerted only minor modulating effects, whereas climatic factors, such as pronounced heat periods and drought, were dramatically overriding.  相似文献   
996.
997.
The tomato Hero A gene is the only member of a multigene family that confers a high level (>80%) of resistance to all the economically important pathotypes of potato cyst nematode (PCN) species Globodera rostochiensis and G. pallida. Although the resistance levels of transgenic tomato lines were similar to those of the tomato line LA1792 containing the introgressed Hero multigene family, transgenic potato plants expressing the tomato Hero A gene are not resistant to PCNs. Comparative microscopy studies of in vitro infected roots of PCN-susceptible tomato cv. Money Maker, the resistant breeding line LA1792, and transgenic line L10 with Ro1 pathotype have revealed no statistically significant difference in the number of juveniles invading roots. However, syncytia (specialized feeding cells) induced in LA1792 and L10 roots mostly were found to have degenerated a few days after their induction, and a few surviving syncytia were able to support only the development of males rather than females. Thus, the ratio between males and females was biased towards males on LA1792 and L10 roots. A series of changes occur in resistant plants leading to formation of a layer of necrotic cells separating the syncytium from stellar conductive tissues and this is followed by degradation of the syncytium. Although the Hero A gene is expressed in all tissues, including roots, stems, leaves, and flower buds, its expression is upregulated in roots in response to PCN infection. Moreover, the expression profiles of the Hero A correlates with the timing of death of the syncytium.  相似文献   
998.
The control of cellular growth is tightly linked to the regulation of protein synthesis. A key function in translation initiation is fulfilled by the 5' cap binding eukaryotic initiation factor 4E (eIF4E), and dysregulation of eIF4E is associated with malignant transformation and tumorigenesis . In mammals, the activity of eIF4E is modulated by phosphorylation at Ser209 by mitogen-activated protein kinases (MAPK)-interacting kinases 1 and 2 (Mnk1 and Mnk2) , which themselves are activated by ERK and p38 MAPK in response to mitogens, cytokines or cellular stress . Whether phosphorylation of eIF4E at Ser209 exerts a positive or inhibitory effect on translation efficiency has remained controversial. Here we provide a genetic characterization of the Drosophila homolog of Mnk1/2, Lk6. Lk6 function is dispensable under a high protein diet, consistent with the recent finding that mice lacking both Mnk1 and Mnk2 are not growth-impaired . Interestingly, loss of Lk6 function causes a significant growth reduction when the amino acid content in the diet is reduced. Overexpression of Lk6 also results in growth inhibition in an eIF4E-dependent manner. We propose a model of eIF4E regulation that may reconcile the contradictory findings with regard to the role of phosphorylation by Mnk1/2.  相似文献   
999.
For studying the function of specific neurons in their native circuitry, it is desired to precisely control their activity. This often requires dissection to allow accurate electrical stimulation or neurotransmitter application , and it is thus inherently difficult in live animals, especially in small model organisms. Here, we employed channelrhodopsin-2 (ChR2), a directly light-gated cation channel from the green alga Chlamydomonas reinhardtii, in excitable cells of the nematode Caenorhabditis elegans, to trigger specific behaviors, simply by illumination. Channelrhodopsins are 7-transmembrane-helix proteins that resemble the light-driven proton pump bacteriorhodopsin , and they also utilize the chromophore all-trans retinal, but to open an intrinsic cation pore. In muscle cells, light-activated ChR2 evoked strong, simultaneous contractions, which were reduced in the background of mutated L-type, voltage-gated Ca2+-channels (VGCCs) and ryanodine receptors (RyRs). Electrophysiological analysis demonstrated rapid inward currents that persisted as long as the illumination. When ChR2 was expressed in mechanosensory neurons, light evoked withdrawal behaviors that are normally elicited by mechanical stimulation. Furthermore, ChR2 enabled activity of these neurons in mutants lacking the MEC-4/MEC-10 mechanosensory ion channel . Thus, specific neurons or muscles expressing ChR2 can be quickly and reversibly activated by light in live and behaving, as well as dissected, animals.  相似文献   
1000.
Rabbani S  Miksa V  Wipf B  Ernst B 《Glycobiology》2005,15(11):1076-1083
Helicobacter pylori is an important human pathogen which causes both gastric and duodenal ulcers and is associated with gastric cancer and lymphoma. This microorganism synthesizes fucosylated oligosaccharides, predominantly the Galb-1,4GlcNAc (Type II) blood group antigens Lewis X and Y, whereas a small population also expresses the Galb-1,3GlcNAc (Type I) blood group antigens Lewis A and B. These carbohydrate structures are known to mimic host cell antigens and permit the bacteria to escape from the host immune response. Here, we report the cloning and characterization of a novel H. pylori alpha-1,4 fucosyltransferase (FucT). In contrast to the family members characterized to date, this enzyme shows exclusively Type I acceptor substrate specificity. The enzyme consisting of 432 amino acids (MW 50,502 Da) was cloned using a polymerase chain reaction (PCR)-based approach. It exhibits a high degree of identity (75-87%) and similar structural features, for example, in the heptamer repeat pattern, with other H. pylori FucTs. The kinetic characterization revealed a very efficient transferase (k(cat)/Km = 229 mM(-1) s(-1)) for the Type I acceptor substrate (Gal)-1,3 GlcNAc-Lem (1). Additionally, the enzyme possesses a broad tolerance toward nonnatural Type I acceptor substrate analogs and therefore represents a valuable tool for the chemoenzymatic synthesis of Lewis A, sialyl Lewis A as well as mimetics thereof.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号